Thermal Crosslinking of an Alkaline Anion Exchange Membrane Bearing Unsaturated Side Chains

نویسندگان

  • Liang Wu
  • Qi Pan
  • John R. Varcoe
  • Jin Ran
  • Zhengjin Yang
  • Tongwen Xu
چکیده

We report a facile new route for the synthesis of self-crosslinked anion exchange membranes (AEM) without the need for any crosslinkers or catalysts. The soluble copolymers bearing flexible side chains, with alkene pendant groups, were synthesized via the Menshutkin reaction. The crosslinked derivatives were then prepared by the thermal crosslinking of the unsaturated side chains during the membrane formation process. 1H NMR was used to determine the content of available alkene groups before crosslinking, while in situ FTIR spectroscopy was used to confirm successful thermal crosslinking. This approach, distinct from the use of classical post-crosslinking processes, installs ionic cross-links (bearing trimethyl quaternary ammonium hydroxide functionality) between the polymer chains. This is to mitigate against excessive water uptakes and dimensional swelling on hydration (extremely low swelling ratio of 2.5% in-plane and 1.2% through-plane 30 oC), while retaining a high concentration of charge carriers (ion-exchange capacity) for target hydroxide conductivities. Additionally, the self-crosslinking strategy, and resulting dense crosslinked network, has the additional advantage of protecting the quaternary ammonium groups from hydroxide ions attack. The strategy produced an AEM that yielded a peak power density of 42 mW cm–2 in a H2/O2 fuel cell at 60 oC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of ion transport and water content properties in anion exchange membranes based on polysulfone for solid alkaline fuel cell application

In present research work, homogeneous anion exchange membranes based on polysulfone (QAPSFs) were prepared via chloromethylation, amination and alkalization. In amination step, trimethylamine and N,N,N',N'-tetramethyl-1,6-hexanediamine were used as amination and crosslinking agents, respectively. The chloromethylated polysulfone was characterized by 1HNMR spectroscopy and chloromethylation degr...

متن کامل

Poly (Ether Ether Ketone) Based Anion Exchange Membrane for Solid Alkaline Fuel Cell: A Review

Solid alkaline fuel cell is employed by polymer anion exchange membrane (AEM) that is permeable to hydroxide ion. A number of polymers have been proposed for AEM which include polysulfone (PSF), poly (phenylene oxide) (PPO), and poly (ether ether ketone) (PEEK). The purpose of this paper was to conduct a critical review on the development of PEEK polymer as AEM, particu...

متن کامل

Polysulfone-based Anion Exchange Membranes for Potential Application in Solid Alkaline Fuel Cells

In present research work, anion exchange membranes based on quaternized polysulfone with ammonium cation moieties (QAPSF) were prepared by chloromethylation, amination and alkalization. The chloromethylated polysulfone were characterized by 1HNMR spectroscopy and functionalization degree was determined according to peak area integration. Ion transport properties (ionic conductivity, ion exchang...

متن کامل

Alkaline Stability of Novel Aminated Polyphenylene-Based Polymers in Bipolar Membranes

This research investigated stability of two novel aminated polyphenylene polymers as anion exchange layers in bipolar membranes. Bipolar membrane stability was tested under operating conditions of 50 mA/cm2, and under conditions of soaking in room temperature 1 M NaOH. The stability of the custom made bipolar membranes was compared with those for two commercial membranes. For the polyphenylene-...

متن کامل

Fuel cell durability enhancement by crosslinking alkaline anion exchange membrane electrolyte

Article history: Received 22 November 2011 Received in revised form 21 December 2011 Accepted 5 January 2012 Available online 12 January 2012

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015